Sodium-carboxylate contact ion pair formation induces stabilization of palmitic acid monolayers at high pH.
نویسندگان
چکیده
Sea spray aerosols (SSA) are known to have an organic coating that is mainly composed of fatty acids. In this study, the effect of pH and salt on the stability and organization of a palmitic acid (PA) monolayer is investigated by surface vibrational spectroscopy and molecular dynamics simulations. Results indicate that alkyl chain packing becomes more disordered as the carboxylic headgroup becomes deprotonated. This is associated with packing mismatch of charged and neutral species as charged headgroups penetrate deeper into the solution phase. At pH 10.7, when the monolayer is ∼99% deprotonated, palmitate (PA-) molecules desorb and solubilize into the bulk solution where there is spectroscopic evidence for aggregate formation. Yet, addition of 100 mM NaCl to the bulk solution is found to drive PA- molecules to the aqueous surface. Free energy calculations show that PA- molecules become stabilized within the interface with increasing NaCl concentration. Formation of contact -COO-:Na+ pairs alters the hydration state of PA- headgroups, thus increasing the surface propensity. As salts are highly concentrated in SSA, these results suggest that deprotonated fatty acids may be found at the air-aqueous interface of aerosol particles due to sea salt's role in surface stabilization.
منابع مشابه
Ionic binding of Na+ versus K+ to the carboxylic acid headgroup of palmitic acid monolayers studied by vibrational sum frequency generation spectroscopy.
Ionic binding of alkali ions Na(+) and K(+) to the carboxylic acid headgroups of fatty acid monolayers is studied as a proxy toward understanding the fundamental chemistry in cell biology. In this study, we used broad-bandwidth sum frequency generation (BBSFG) vibrational spectroscopy to investigate the ionic binding event that leads to deprotonation and complex formation of fatty acid headgrou...
متن کاملTrace Analysis of Niflumic Acid in Milk and Human Plasma by Ion-pair-based Vortex Assisted Dispersive Liquid-liquid Microextraction Combined with UV-Vis Spectrophotometry
A simple, accurate and fast vortex-assisted dispersive liquid-liquid microextraction procedure has been developed for the extractive spectrophotometric determination of niflumic acid in biological samples. The method is based on the formation of an ion association complex between niflumic acid and methylene blue. The resulting ion-pair was extracted into dichloromethane and its absorbance was m...
متن کاملImpact of long-range van der Waals forces on chiral recognition in a Cinchona alkaloid chiral selector system.
Singly-charged complexes of (8S,9R)-tert-butylcarbamoylquinine (tBuCQN), N-3,5-dinitrobenzoyl-(S,R)-leucine (DNB-S/R-leucine), and alkali metal counter ions (Li(+), Na(+), K(+)) were investigated by density-functional theory. It is shown that the cations prefer formation of an ionic pair with the carboxylate group of DNB-Leu over the formation of a cation-π interaction. The [tBuCQN·DNB-S/R-Leu·...
متن کاملA Study by Contact Angle of the Acid-Base Behavior of Monolayers Containing <.r-Mercaptocarboxylic Acids Adsorbed on Gold: An Example of Reactive Spreadingr
Mixtures of HS(CH2)16CO2H and HS(CH2)1oCH3 adsorb onto gold from solution in ethanol and form densely packed, oriented monolayers. These monolayers expose a combination of polar carboxylic acid groups and nonpolar methyl groups at the surface. Varying the concentrations of the two thiols in solution allows the density of carboxylic acids at the surface and the polarity of the monolayer-liquid i...
متن کاملCoductometric studies of the interaction of acid green 25 with cationic alkyltrimethylammonium bromid surfactants
The interactions between an anionic dye, Acid Green 25 AG and the two cationic surfactants tetradecyltrimethylammonium bromide TTAB, and hexadecyltrimethylammonium bromide CTAB in aqueous solutions far below the CMC are studied using the conductometric method at different temperature. The equilibrium constants and other thermodynamic functions for the process of dye-surfactant ion pair formatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 19 16 شماره
صفحات -
تاریخ انتشار 2017